Chapter 15
Sampling principles
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1 PROLOGUE

Applying a sampling technique to the solution of any
problem is often an admission of a fundamental inability
to encompass all the data involved. In effect sampling is
specifically used to reduce information to its essentials
- or at least to a more manageable level. At microwave
frequencies it is often the only practicable technique
available, and in this forum time domain sampling may be
classified into three broad functional categories:-

i. Switching between two or more reference/measure
paths

ii. Part of an Analogue to Digital conversion
process

iii. Overcoming fundamental hardware speed
limitations precluding real-time operation.

In turn each of these categories involve processes
that may be perceived to be Sub-Nyquist, Nyquist or Super
Sampled. It is therefore essential that we examine the
action of sampling in some depth before we go on to
consider specific microwave measurement applications.
This chapter is thus solely concerned with explaining the
action and limitations of sampling in the time domain -
but with due reference to the frequency domain
implications. Some reference is also made to the
practical difficulties encountered and the engineering
solutions available. In the chapter that follows we
concentrate on specific examples of instruments and
measurement techniques employing sampling and explain
their actions, applications and limitations. An initial
consideration is also given to the design and realisation
of practical time samplers.
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1.1 Mathematical Symbols, Notation and Definitions

i = an integer
n = an integer
T = a period of time
t = a period of time
f = carrier frequency
f = modulation frequency
f = sampling frequency
B = a finite frequency band
8 = modulation index
J, = Bessel function of the first kind
g(t) = generalised function of time
G(f) = generalised function of frequency
<=> signifies a Fourier transformation

* gignifies a convolution integral

a summation over all 'n'

™

a summation over all 'n' except n=o

2,

s(t) = combT[ ]l = 2: §(t-iT) = the sampling function
1 (at T intervals)
Rep ; [ ] = the replication function (at % intervals)
T
rect(t) = u(t+k)-u(t-%) = the rectangular function
_ sin(nft)
sinc(t) = —fc
+ oo

8(e) A f s(t)dt = 1; 6(r) = 0, t #0 = the Dirac delta function
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2 INTRODUCTION

The derivation of the sampling theorem is often
attributed to Nyquist {1], Shannon [2], and less commonly to
Gabor [3], but in fact it was known to Cauchy [4] much
earlier. 1In many respects it was rediscovered and refined
by Whittaker (5,6] before it emerged in its more popular
guise via communication theory [7]. Briefly this theory
states:-

If a signal is band-limited and if the time interval
is divided into equal parts forming subintervals such that
each subdivision comprises an interval T seconds long
where T is less than half the period of the highest
significant frequency (B) component of the signal; and if
one instantaneous sample is taken from each subinterval in
any manner; then a knowledge of the instantaneous
magnitude of each sample plus a knowledge of the instants
within each subinterval at which the sample is taken
contains all the information of the original signal.

There are at least 5 generalised sampling theorems
[8] that spring from this definition - and many more
[9,10] related to the relaxation of the bandlimiting
constraint. Fortunately we are only concerned with two
relatively straightforward interpretations pertaining to
systematic and random sampling of bandlimited signals.

3 UNIFORM SAMPLING

3.1 The Nyquist Case.

Let us consider a bandlimited signal g(t) with a
frequency spectrum G(f), sampled by evenly spaced Dirac
elements [11-15] as follows:-

8(6) . 8(e) = comby [g(6)] =D, 8(c-im) . glr) eeee (1)
A A
U Il
v v

%Repl e1€3)] E% Zﬂ G(f-%) ceese (2)

T

Alternatively, an amplitude modulation view of this
process may be derived:-

1 n
T Zn G(f-i)

’
GI('f) . %Zﬂ ls(f.%) * G(f)

n

Therefore glt) . s(e)
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Pictorially the sampling of a bandlimited signal may
thus be viewed as an amplitude modulated harmonic series
as indicated in Fig 1.

alt) comb.. [9(t)]

N I it

0

input z band-limited
~ input

Gif) s{t) sampling
spectrum function
f — f

sampling
frequency

time sampled time output

frequency replicated

FPig 1 Sampling a band-limited signal

Clearly the limiting condition for separability - or
recovery of the original information undistorted, is when
fs > 2B - this is commonly referred to as the Nyquist
condition [1] and 2B called the Nyquist frequency.

3.2 Sub-Sampling.

If the sampling frequency is not at least twice that
of the highest component present, or if the signal is not
strictly band-limited, aliasing distortion [16] occurs as
the frequency bands overlap.

aliasing due to sub sampling aliasing due to unlimited bandwidth
[T, <>
0 (1]
fs<28

Fig 2 Alias distortion in the frequency domain

This phenomenon of non-ideal-separability may also
be conveniently viewed in the time domain as depicted in
Fig 3.

BW=1| 2t
El— |
~F samples
1 t remain
separable
BW<I
3, 3 BtiT) ¥ fa1 ;
~ | samples
! t  no langer
separable

Fig 3 Alias distortion in the time domain
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In the case of continuous signals that are not
strictly band-limited this effect has to be minimised to
prevent serious distortion. The effects of aliasing are
often considered as noise-like processes and a power
criterion is commonly used to restrict its effect.
Typically this might be < 1% of the total recovered sample
power depending upon the application {17]. . For periodic
signals this problem is generally less serious because the
frequency spectrum is discontinuous and the spectra can be
interleaved by the sampling process. The signal thus
remains perfectly recoverable provided the sampling
frequency is adjusted to achieve spectral interleaving.

| H Teﬂ;TJﬁTﬂhT I T b,

0 2f,

Fig 4 Interleaving of sample spectra

This form of sub-sampling is predominant in
instrumentation where sinusoidal or repetitive waves of
limited harmonic content are to be processed. For a
sinusoidal wave, in particular, the sampling action may be
thought of as a "down conversion" modulation:-

comb,r [cos21rfct] <=> 2—,} Rep-l [G(f-fc) + 6(f + fc)] ceees (6)
T
Crr T
f T f
~fe 0 e <4H \ 0 I

Fig 5 Down conversion via sampling

3.3 Super Sampling.

Strictly speaking any sampling process that uses
fs>2B falls in the super sampling category. 1In fact the
title is more commonly reserved for cases where fs>>2B,
which implies a high degree of separability making
possible simple filtering. When defining super sampling
we have to take care in terms of our definition of the
original signal. Consider the two cases of a single
carrier and a carrier with bandlimited modulation as shown
in Fig 6.
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Fig 6 Example spectra

On the one hand to recover the carrier we might
expect to sample at f¢>2f;. On the other, to retrieve the
modulation information we have to sample at £4>2B - not
£¢>2(f,+ B) 11 How is this so? Consider the action of
the sampler:-

signal g(t) = [1 + m(e)] cosu t evses (7)
sampled signal h(t) = comb,, [cosmct] + comb,, [m(t) coswct] cesss (8B)
A
I
v
H(f) =

%Repl {lé(f) + M(£)] * % [G(f-fc) + 6(f+fc)]}
T

ceees (9)

NENNERNENNE.

=f.>2B

Fig 7 Sampler output spectrum for a carrier plus
modulated carrier

Qualitatively we can arqgue that a carrier alone
contains very little information (only amplitude and
frequency) and occupies zero bandwidth, therefore
requiring a sampling rate << fg. Similarly the
information bearing energy of the sidebands lies in a
bandwidth B, and a sampling rate of fs>2B is sufficient.
In short, the process of down conversion can be achieved
by a sampler of rate >2B.

It is clearly necessary to take some care to define
sampling systems in terms of the information to be
recovered; for a repetitive wave containing fixed
amplitude and frequency information we may in principle
sample as slowly as we wish.

4 NON-UNIFORM SAMPLING

4.1 Statement of Constraints.

The sampling theorem tells us that we may recover
all of the original information provided that samples are
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taken in T spaced slots (satisfying the greater than twice
frequency criterion) and that both the amplitude and time
information is recorded [8]. This condition is satisfied
for random and deterministic distributions of the sample
times provided they do not stray beyond the boundary given
by + T/2 on the uniform case {18,19].

I 1 T T uniform sampling
} t
0 T 27 3T
1 1 T I ! L non-uniform sampling
1
—t t t
: 0 - —
T T T sampling space bound

Fig 8 Non-uniform sampling

4.2 Practical Occurrence.

The randomisation of the sampling process can arise
via three principal mechanisms:-

i. Uncertainty in the signal arrival time - such as
pulse from a non-stationary source.

ii, Jitter in the sampler action.

iii. Deliberate randomisation, or deterministic
perturbation, introduced to avoid harmonic or
sub-harmonic beats between the signal and
sampling frequencies,

Providing the sampling time shifts are constrained
and both amplitude and position information is retained
each of these categories may be catered for in practice
[21], However, in the field of nuclear physics the above
conditions are further compounded by amplitude and shape
variations from sample to sample: Fortunately this lies
outside our sphere of interest!

4.3 Deterministic Perturbation Analysis.

As any well behaved deterministic distribution of
the sample instants may be described by a suitable Fourier
series, we consider the special case of a sinusoidal
variation, about the uniform points. Extension to an
arbitrary variation is then a straightforward matter of
including similarly disposed components {22,23}. For
manipulative convenience we therefore apply a sinusoidal
modulation to the sampling instants via a cosine series
description:-
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s(t) = % {1 + 221’. cosZﬂfsit} ceses (10)

With the introduction of a sinusoidal sampling
deviation this takes on the deterministic form:-

84(t) ;i:{l + 221'. cos(wsit + Bsinmmt)} eeses (11)

-'li"{l + 222‘ Jn(B) t:os(ims + nmm)t:} eeaes (12)

Where J, (B) are Bessel functions of the first kind

B is the modulation index
wpy is the modulation frequency

Sampling a bandlimited signal with this wave gives:-

84(t).glr) <=> -,11-_ {G(f) +ZJH(B)[ S(f-ifs-nfm)+6(f+ifs+nfm)]} *G(f)

i,n

eeees (13)

Fig 9 Sampling spectra with deterministic
perturbation

Hence provided fg is made sufficiently large, the
deviation Bfp is constrained, and we have a knowledge of
fs (ie when the samples were taken) we can recover g(t)
intact. When f¢>>fg - the highest freguency in the

bandlimited signal - we need only consider the i = 0
component in isolation:-

J (B)

sy (xae)|,_= S L3 B 60 -ngy) + 6(E + ng))

ceess (14)
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Fig 10 The fundamental sampling spectrum with a
deterministic perturbation

A further separability condition is now apparent.
When 2 #<fy; G(f) may be recovered by filtering out the
baseband component about f = 0,

When the above conditions for separability do not
apply our only recourse is to deconvolve [24] or log both
amplitude and time information of each sample [25,27] -
simple recovery by filtering is not generally possible.

4.4 Random Perturbation Analysis.

Unfortunately there is no concise closed form
analysis available for this case [28] and we thus adopt a
series solution to illustrate the process and its
similarities with deterministic perturbation. Stipulating
that the random modulation introduced by ¢(t) obeys the
condition|¢(t)|<< 1, we can assume the following
approximations:-

sR(t) = %{1 + 22,. [cosmsit - ¢(t)simnsit]} PP

5o (£) =1 &0 +2i [6Ce=i£) + 8CE+if D] + 59 [off~if.) - o(£rif))]

ceees (16)

Sg() *c(f)=c—i.fl+%zi ( G(f-ifs)+c(f+ifs)]+% 2[ @(f-ifa)-o(ﬂ-ifs)] *G(£)

ceeee (17)

iw

Va D ) T

| i l —!
|vs| o’szfizij"'

Fig 11 Recoverable spectra with constrained
random perturbation
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Again, separability is possible provided; fgs >> EG
and fg >> (fg + &), otherwise a record of all sample
amplitude and times has to be made as per the
deterministic case.

5 PRACTICAL LIMITATIONS

5.1 Aperture Distortion.

The Dirac & function is physically unrealizable and
in practice we have to content ourselves with more modest
functions [29,30). These are not only limited in their
amplitude and width, but also in their shape. Although a
rectangular pulse is unrealiseable - as is a rectangular
filter in the frequency domain, we use this ideal as a
convenient approximation to demonstrate the practical
limitations imposed by finite amplitude and width sampling
pulses.

comb 7 [g(t)] » rect(¥/y)
ait)

Z5tiT)erect(Yr)

Fig 12 Aperture distortion model

With this imperfect sampling pulse the output is
both amplitude scaled and time domain smeared by the
convolution process, which leads to a reduction of
effective bandwidth in the frequency domain:-

comb,, [g(e)] * rect (_-tt-) <=> -1,17 Rep; [G(£)] . T sinc (f1) veess (18)
perfect smearing perfect bandwidth
sampling function spectrum reduction

The sampler output thus suffers a frequency domain
droop dependent upon the particular shape of the sampling
pulse. For all practical pulses of interest the resulting
distortion is bounded - best to worst - by sinc and sinc?,
ie the pulse shape lies between the rectangular and
triangular. The resulting amplitude distortion introduced
by these functions, as well as that for a Gaussian pulse
are given in Fig 13.
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amplitude

Sinc{fr) = Sin (nf7)
afT

0.8 ~

0.6 4

0.4 4
Sinc? (#7)
0.2

eup{—nf’f’}
0 T

T T T + T
0 02 04 06 08 10 1 10 100 1000 ps
normalised frequency sampling width

Fig 13 Aperture distortion with pulse width and
shape

For some applications this limitation can be partly-
off-set by introducing an amount of high frequency
compensation prior to the sampler as indicated in Fig 14.
However, this is not a popular technique at microwave
frequencies as it often introduces other complications
related to phase distortion which is also compounded by
the variability of practical samplers - generally speaking
engineering solutions tend towards producing the best
sampler possible.

resultant

input
compensator

Fig 14 Sampler frequency compensation

FPor many applications the concept of a bandwidth
reduction penalty is sufficient - in others it is somewhat
imprecise. Consider the examples given in Fig 15;
clearly for the smooth sinusoid the lack of bandwidth is
not critically important - it only results in an amplitude
scaling. For step or pulse type signals however the
penalty can be more severe. In these cases an engineering
rule of thumb says; the sampling pulse width should not
exceed 1/10 the transient period.
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t ﬂ( t

loss of sharp loss of start time
amplitude scaling only transitions and transients

Fig 15 The importance of sampling width

5.2 Synchronised Sampling.

When dealing with periodic signals the sampling
process works provided the sampling frequency and signal
frequency are not directly (or closely) related. To
illustrate this feature let us consider the case when:~

- eos [t
g(t) = cos [ nT] veess (19)
vhere n is an integer and fs = %
27t = 1 1 1
now comb,, [cos =5 <= >-2—,r Repl [G(f - nT) + 8(f + nT)] eeses (20)

T

N DN LR

G~ T

samples repeatedly taken
at the same point in cancellation of
the repetitive waveform sidebands

Fig 16 Synchronised sampling of a sinusoid

This clearly results in a repetitive sampling of the
same value in the wave which manifests itself as sideband
cancellation in the frequency domain. Recovery of the
original wave is thus impossible and hence the sampling
theorem requirement £4>2B . For the case of closely
related sampling and period time - ie 'n' is 'not quite’
an integer - a slow roll or progression becomes evident.

2wt . 1 1 1
comb,r[cos m]<—>-2—,rRepl[s(f-(n+A)T+6(f+(m_A)T)] ceee. (21)
T

The resulting sampling process thus suffers from a
"beat frequency", which in terms of any measurement or
observation is undesirable and should be avoided. In
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contrast, when the sampling frequency and repetition rate
of a periodic wave are related in a sub-harmonic manner
(fs << fg4), then synchronised sub-sampling is achieved
giving an expanded time display of the original wave as
shown in Fig 17. At present this is the most commonly
used sampling CRO display technique for microwave
frequencies, and as per the previous case, precise
synchronisation must be maintained or a beat frequency
(display roll) is produced.

J/\/\{\f\/'\/\/\ ,

lvue

expanded
timescale

Fig 17 Synchronised sub-sampling of a sinusoid

5.3 The Hold Process.

Because we inherently use narrow sample pulses it is
often necessary to stretch the output from the sample gate
before it can be further processed [26,29]. Attempting an
A/D conversion or trying to display these direct would
clearly be impossible. It is thus necessary to hold the
sample values so that an A/D converter can converge [31-
34] or a CRO tube can be sufficiently illuminated.

The physical realisation of the hold function is
dependent upon the particular application, but in general
it takes the form of an integrator, which leads naturally
to the integrated product description for sampling
depicted in Fig 18. In many microwave applications it
is necessary to distribute this process using dispersive
transmission line, amplification and the sophisticated
integration to counteract temperature, voltage and other
drift parameters.

fdl
- s(t).glt) 1_1[|/\'_1 |[> CRO or A/D

~ o~ J swate
5(‘) " ' T %
_E_ 2227777

Fig 18 Sample and hold model
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5.4 Sampling Jitter and Noise.

All practical sampling schemes suffer from
fundamental circuit limitations and signal uncertainties
that give rise to both amplitude noise and phase jitter.
Given that every care is exercised to minimise these at
the design stage, further reduction is possible by signal
averaging along both the amplitude and time axes, as well
as more sophisticated image processing [31,35]. Broadly
speaking averaging techniques achieve performance
improvements by the voltage addition of the wanted signal
and power addition of the noise/jitter as depicted in
Fig 19.

sampled signa! sampled noise resultant
[oXe]

o (¢}
sam;I)Iel v + 00000 o o
i*m% L ety *Joﬁo S
(o]
sample N +
v
o 0000 o
1 - o o O t"
output +
NV [}
—eeeeeene -“o—c’-o-c—oc-gsiﬁo ﬁ

Fig 19 Signal averaging example

2
Original S/N = (g) ceees (22)
2
New S/N = (n—v;—- eesse (23)
no

The improvement attained is thus « 10 log n dB.

For small deviations sampling jitter may be
considered to be a noise-like process and, by virtue of
phase to amplitude conversion, the above averaging
description is applicable. However, amplitude and time
axis averaging may be applied independently by operating
on the full sample array [31,36-38].

6 A FINAL NOTE ON THE PRINCIPLES

Although we have concentrated on time domain
sampling alone, it should be recognised that many of the
developments described have a dual role in the frequency
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domain. This duality is principally introduced by the
nature of the Fourier Transform Pair. Sampling in time or
frequency produce very similar phenomenon in the other
transform domain. Further analogies may also be drawn
with travelling wave devices which effectively use spatial
sampling to achieve wide bandwidth operation. A good
introductory text explaining some of these aspects, has
been written by Bracewell [13].
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