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The model consists of a gating device followed by a finite time integrator, then an ideal sampler
and finally a holding filter which stores the energy from the acquisition phase. This is called an
acquisition and hold processor or integrate and transfer processor. The acquisition phase of the

operation 1s given by;

X(e)=Cr () (e)* 1, (0)

X()= 3 (ule~ kT )~ ule - (T, + T, )4, (sin(o,t + 4, )* 1, ()

k=—o0

The ultimate output includes the energy storage or transfer phase of the operation and is written

as;

8,(t)=(x ()5, () * b, (1)

$,t)= (X5, k(T ))*ule - (T, +T,) - ule - (k +1)T,)

k==
T=T, -T,

This model considers the aperture operation as implemented with an ideal integrator and the hold

energy storage means as implemented with the ideal integrator. As shown elsewhere this can be

approximated by energy storage in a capacitor under certain circumstances.

The acquisition portion of the operation possesses a straight forward Fourier transform given by;

Finite Time Integrator

Harmonic Sifter 7 -
< SR \ (T, sin(wT, /2
X, 0)=3F,1X = E Slw -k A ,joTyi2 4 .
o(@)=3,{ o)} & 2T (0 —ko,) ( > e 7 /7 2 ] S,(@),

Original Information
Specturm Chopped by C(t)

S ()= s{r(e)} Modulated Information Spectrum

S, (@) can be found in a similar manner.
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ZO0DH Response

Harmoric Sifter ~

2 1 7T jorssin(wl/2)

oy - ___5 __k L jeri2 S\ E T &)
01 3, 5170k (Terr2 2] x(o)

T=T, -T,

The following figure illustrates the various components of the transform superimposed on the

same graph, for a down conversion case where T, is chosen as a single aperture realization and

the 3™ sub harmonic is used for down conversion.

fl([ )
ZODH LOVVPESS

Harnonic Sifter
Desired carrier for Down conversion

-f

2f s esired Passband Spectrum
~ o o _3f s . Containing Information
Integrator and Aperture s Tz
Response i
~— £ k
\ - ] Sample Aperture Null
o 4 N K2 3 o .
‘ ~ooey - ¥ ~
<t A v : © o0 +\f
< N o >
-f ; s
£ £ f fi +f
A c s s f c

ST8500412A.940

@ -Ty
_(Ts - TA ¥t

Figure A4.0-2 D2D Fourier Transform Responses for the Case where f, =3f, and f, =2f,

The analysis does not cornsider the affect of noise, although, it is straightforward to accomplish,
particularly in the case of AWGN. (If noise is included then a front end filter should be utilized

to eliminate the sampling alias terms outside of the band of interest). The lowpass spectrum
possesses nulls at nfy,, n=0, £1, +2,..., where f, =(T, =7,)". This ZODH spectral response

is also present at each harmonic of f,, although it is not indicated by the graphic.

Returning to the acquisition portion of the Fourier transform yields an important insight.
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. T
- . sm(a} %)
B Y.6(0-ka,) ejw%‘—T—— -8, (@),

{o34)

Si(a))c = "4Ir]1Aeja)TA/2 - 77 N (5(60 - a)c )+ 5(&) + (oc ))

/T/)
ol T4
\\ 5

It should be apparent that whenever k@, = @, that down conversion occurs. It is useful to find

Xo(w)z

Ta which maximizes the component of the spectrum at @, which is subject to down conversion

and is the desired signal. This is accomplished simply by examining the kernel.

T, Sin(“’(% D‘
o) |

Foro=w,,

~

XA

, nT, =T, for Harmonic Conversion

i .. . T, 1/ 3/ 5
The kemel is maximized for the obvious values of —]:— = A, A’ / ot

Advocates of impulse samplers are quick to point out that letting 7, — 0 maximizes the sinc

function. This is true but the sinc is multiplied by T4 in the acquisition phase. Hence, a delta
function that does not have infinite amplitude will not acquire any energy during the acquisition

phase of the sampler process. It must possess infinite amplitude to cancel the effect of 7, — 0

so that the multiplier of the sinc function possesses unity weighting. Obviously, this is bogus for
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practical circuits.

T
On the other hand the D2D output with f = %, %’ y ,---etc., does pass significant

calculable energy during the acquisition phase. This energy is directly used to drive the energy

storage element of the ZODH filter or other interpolation filter, resulting in practical RF

impedance circuits. The cases for T% other than % can be represented by multiple

c

correlators operating on multiple half sine basis.

Moreover, it has been shown that the specific gating aperture C (t) does not destroy the

information. Quite the contrary, the aperture design for D2D produces exactly the result of the
impulse sampler scaled by a gain constant, possessing less variance! Hence, the delta sifting
criteria, above trigonometric optimization, and correlator principles all point to an aperture of
T A

1 )
—£ = — nominal.
T

[4

If other impulse responses are added around the D2D (ie., energy storage networks, matching
networks, etc.) or if the integrator/correlator is approximated by simple circuits (such as an RC)

then the optimal aperture can be adjusted, slightly to reflect the peaking of these ‘non-ideal’

realizations. However correct design minimizes such considerations.

It is also of interest to note that the Fourier analysis predicts greater DC offsets for increasing

T T ) .
ratios of =% . Therefore, F" = % is probably the best design parameter for a low DC offset

[ [

system.
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Appendix A5 - Energy Per Bit

The following equation according to the present invention can be solved to find an

expression for the energy accumulated over a bit time, Eb, as shown below.

Ta Units: u(t) Volts
D-J‘ (u(t) —u(t—"Ta)) A-sin (2t -ft4+¢ )dt u(t-Ta) Volts

0 A Volts

D=mA -cos (¢ ) Locos (2w f)) Evaluated from 0 to Ta

(2-m)-f

D is expressed in

Volts*Volts/Hz

f=14

D=mA -cos (¢ )‘<-COS (22% 'f‘t).t\)
R

/

Evaluated from 0 to Ta

D is now expressed
in Volts*Volts*sec

Dividing D by the corplex impedance Z of the RC circuit when the aperture is
closed results in:

\
Daa cos (0 ).("COS (2m ft)t)
z \ 2 -Z /

Evaluated from 0 to Ta

We also know that;

Volts*Volts/Z = Power

Power = Joules/sec

therefore; D/Z has units (Joules/sec)*sec
or
D/Z is now expressed in Joules

D/Z is the amount of energy accumulated over 1 aperture period or Joules per
aperture

A more useful measure is the energy accumulated over a bit time or Eb. This
can be expressed as:

apertures_per_bit

Eb = E A -cos <¢ n) Evaluated from O to Ta

_(/- cos (2-m -f-t)-t \,

T - /
n=1 \\ thZn /

Eb is expressed in Joules per bit
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Referring to the following equation, from above, it can be seen that there is a 277f term in

the denominator.

(— cos(2~7z-f-t))

D= A-cos(g)- (2-7)-f

Analysis reveals that this term, and other terms, have physical units that allow a person skilled in
the relevant art, given the discussion herein, to understand and relate the resultant quantity in a
manner consistent with actual measurements of implementations of the present invention.

Note that as the aperture time Ta becomes smaller, the absolute value of the energy
accumulated over a single aperture period is less. However, what is equally important is the fact
that the energy continues to accumulate over multiple aperture periods. The number of aperture
periods required to reach an optimum value is dependent on two factors: (1) the aperture period,
and (2) the complex impedance (Z) of C and R when the switch is closed, as described elsewhere

herein. The values of C and R can, therefore, be selected to optimize the energy transfer during

the half sine sample period. By including the Z term in the equation, a person skilled in the
relevant art can calculate the Energy per Bit (i.e., Eb) directly and relate the results back to
embodiments of the present invention, e.g., hardware performance. This analysis can also be

used to show that the optimum system performance in terms of bandwidth and power transfer

occurs when the aperture period is equal to one-half of a carrier frequency cycle.
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Appendix A6 — D2D Linearity Analysis

The following analysis provides two descriptions that explain to a person skilled in the
relevant art how to improve the linearity of embodiments of the present invention. It should be
understood that these descriptions are being presented by way of example only, and not

limitation. Other embodiments are possible and are covered by the invention.

First Description

To analyze the linearity of D2D, we need to understand the causes for distortion in an
enhancement MOSFET (NMOS or PMOS). Since this is a relative analysis, not an absolute
analysis, we don't need a precise model of the parameters of the D2D FETs. Here, we make
up some reasonable model parameters for the enhancement MOSFETS.

W :=400-10%  channel width V=2 threshold voltage
L:=0510°% channel length

3 W
K:=03-107 2= K= 024

”

The drain current for an N-Channel Enhancement MOSFET is given by the following 2nd order
equation:

i o= 21 .
Ip VGs: VDS = K‘[Z' VGS'Vt'VDS"VDS] if vpgsvgs- Vi

[K- vgs - Vi 2} otherwise

Note, since this is only a second order model, we can only analyze second order distortion here.

Drain Current vs Drain - Source Voltage

3 T | T T
ipdvps |
_ 2 - - -]
D4 Vps —
..... ~
'D 3:VDs P
———— 1 / -__-_____,__-----.----_-----------..--......--_-__..-.........---.--:
e
Ll
1 ! I i
%0 1 2 3 4 5
VDS
- VGS =3V
----- VGS =4V
— - VGS =5V
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As evident from the ip versus vps plot above, the larger the voltage vgs the larger the linear
region (larger "ohmic" or "triode" region) for vps. This region is the sloped lines (linear
resistances) just to the left of the knee of the curves. The drain current distorts when v DS
starts swinging beyond the sloped line, into the knee of the curve. Now, lets see how the drain
current of the FET distorts when a sinusoid vps(t) is applied across the drain and source.
Notice, in the following plot, that the FET is increasingly linear with increasing vgg.

f:=1 0:=25f A:=1
v pg(t) = A-sin(o-1)

Linearity Improvement By Increasing VGS
2 T | | T

i D 3,v DS(I)

ID 4,VDs(t)

lD S‘VDS(t)

Therefore, biasing the FET with a larger V gs improves our linearity. What would hagpen !f
instead of having a large, constant Vgs, we make Vgs changg proportionally to Vps? Let sh
plot this scenario with a few different constants of proportionality gnd see what happens to the
linearity. To make a fair comparison, we will plot all the curves with the same DC biasonVgs
and start from a constant of proportionality of zero, i.e., no change of Vg with Vps.

VblaS=3 Vv
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Linearity With VGS Proportional to VDS
I 1 | I

iD Vpiast 0V pg(t),vpg(t)

D Vbiast -5V ps(t), v pg(t)

D Viiast [V ps(t), v pg(t)

~— VGS constant
""" VGS proportional to VDS (constant of proportionality = 0.5)
— = VGS proportional to VDS (constant of proportionality = 1.0)

Thus, it appears that we can get an additional, significant linearity improvement over the large
and constant Vs case, if we make Vgs change propartionally to Vps. Furthermore, it appears
that there is an optimum constant of proportionality. Let's take the FFT of these FET currents to
see how significantly the second order distortion is affected with different constants of
proportionality. Additionally, we would like to know the optimum constant of proportionality to get
the best possible linearity.

NumPointsFFT := 23 NumProportionalityConstants := 5

row := 0, 1.. NumPointsFFT - 1 col := 0, 1.. NumProportionalityConstants - 1

[0 ] Constants of proportionality relating

maxAlpha 0.25 Vgs to Vpg as the following:

Uop = — -col
NumProportionalityConstants - 1

a=] 0.5
VGs = Viias + @ * Vpg
0.75
I
f ¢ := NumPointsFFT FFT le rat £ . fs FFT frequency
s = NumPoints sample rate min = NumPointsFFT resolution
fS =8 Hz fmm =1 Hz
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. s row row sampled distortion t i
i i Ve 4 . p current matrix
me, col D V bias t %0l VDS A vDS f rows = sample number
S s columns = sampled drain current waveforms for different
constants of proportionality relating Vgg to Vpg

Spectrum< col> ._ i D< col> take thg FFT of the'drain current for each constant of
proportionality relating Vgs to Vps

Spectr bt .
Distortion_2nd._, = 20-log pectrum, | the second order distortion relative to the

4 { Spectrum, l fundamental in units of dBc for different values of o
FFT of Drain Current (alpha0) | FFT of Drain Current (alphal)
i T T
. Spectrum | Spectrum
o row,0 05 u ,Q row, 1 05 ]
0 g
0o 1 2 0 0 2
row ow
for a,=0 for «;=025
Distortion_2nd,, = -12.041  dBc Distortion_2nd, = -18.062  dBc
FFT of Drain Current (alpha2) FFT of Drain Current (alpha3)
1 T 1 i
| Spectrum | Spectrum 4
!Q Tow, 2 05 _ é Tow, 3 05k ]
% 1 2 e I 2
row row
for a,=05 for ay;=0.75
Distortion_2nd, = -318.443 dBc Distortion_2nd, = -18.062 dBc
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FFT of Drain Current (alpha4)
I

! Spcctrummw 4 ;

) 0.

=4

row
for = 1

Distortion_2nd, = -12.041  dBc

The plots and second order distortions calculated above indicate that there is a significant linearity
improvement by making Vgs change proportional to Vpg over the case where Vg is constant (alpha = 0
shown above)! The optimum alpha is 0.5, or when V gs is proportional to Vps by a factor of 0.5. Although
not demonstrated above, it can be shown that choosing values of alpha greater than 1, will actually make
the FET linearity worse than having a constant Vgs (alpha = 0). Incidentally, notice that the DC term

grows as the second order distortion gets worse, as expected (second order distortion produces a DC
term).

Why does making Vs proportional to Vps by a factor of one half, make the FET more linear? The
following plot demonstrates that by doing this, we "linearize" the ip versus Vps curve. To demonstrate
this linearization, the following graph will plot drain current with a constant Vgg beside drain current with
the same Vg bias that has a Vg signal proportional to one half Vps.

Again, the drain current for an N-Channel Enhancement MOSFET is given by the following 2nd
order equation:

i = 21 .
ID VGs:VYDps = K'[Z'("GS‘VJ'VDS‘VDS] if vpsEvgs -Vt

[K- vgs-V t 2] otherwise

Linearization of FET Current

2 | T 1 it
7~
‘/’
-~
'p 3,Vps 15 T -
. ’/
ip 3+05Vps.Vps - .-
_____ _
ip4,Vpgs 1 - e
—_ - e //" ______
ip 4+05Vpg.Vps o T
_ R
0.5 ,/// et -
L T
e
/ ant
0 ! I 1 I
0 05 1 15 2 2.5
Vps
— VGS=3V
“““ VGS =3V +0.5VDS
— - VGS=4V

~°7 VGS=4V+05VDS
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This FET linearization can also be seen mathematically by substituting Vgs = Vpias + 0.5Vpg into the
FET's drain current equation above:

. 21 .
ip vps = K-[Z'[ Vbias*0'5'v DS -Vt]'v DS~ VDS ] if VDSSV bias T 0.5V DS'Vt

[K- Vpias t03vpg-Vy 2] otherwise
Simplifying this expressicn yields:

iD VDS = [Z‘K VbidS - Vt ]’V DS if VDSSZ' Vbias- Vt
025K{vpg+2 Vg~V [ otherwise

Thus, for vpg < 2(Vpias - Vi), the drain current is a linear function of vpg with a slope of 2K(Vpas - V). In
this region, making Vg equal to half of Vg, cancels the square term (Vpg)?, leaving only linear terms.

It has been observed that the foliowing differential configuration of D2D (Figure 1) has superior
linearity over the simple series or shunt configuration of D2D. What is the reason for this? The
reasons that make this a more linear architecture are the FET linearity factors explored earlier in
this discussion. The reasons are as follows (the notation [a|, denotes the absolute value of “a") :

1) Vgs |2 0.5 *Vdd
...In other words, the inslantaneous differential voltage |Vgs| is made as large as possible for both

NMOS and PMOS devices. This configuration guarantees that voltage differential |Vgs| will never
swing below (0.5 * Vdd).

2)|Ves |=]0.5*Vpg|+0.5*Vdd

... In other words, as the RF signal across the drain and source gets larger, the voltage differential
|Vasl gets larger by a proportionality factor of 0.5. This is a very interesting concept: when the RF
signal gets large and we need more linearity, Vs increases to give us more linearity! This is the
concept we explored earlier.

3) The drain and source of the NMOS and PMOS devices swap every half RF cycle so that (1) and
(2) are always met!

/\/ Rload
—

Vdd -—l I—— l Vdd
GND id > —J—-L— GND

A,

A
e e e

- — .
? 1/2 vdd ]; Rioad
f .
i
\[\
Figure 1 - Differential D2D Configuration
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/

NOTE: An amplitude imbalance across the D2D FETS will degrade the 2nd order linearity
performance. This is because the amplitude imbalance will change the constant of proportionality
relating vgs to vps from the optimum value of 0.5 to some other value. The only amplitude
imbalance possible is at RF, because this configuration guarantees that the baseband waveform
will have perfect phase and amplitude balance.

Some of the problems with the simple shunt configuration (Figure 2) is that:

1) Vs only increases with Vpg over half of an RF cycle. The other half of the cycle Vgg is
constant.

2) The half RF cycle that Vgs does increase with Vps, it increases at the same rate as Vpg, not
the optimum rate of one half. The following is the magnitude of Vgg

| Vgs |=|Vps|+0.5*Vdd for negative half of RF cycle
}Ves[=0.5*Vvdd for positive half of RF cycle

a2V S

}_.

Vdd — — Vvdd
GND l—-l e L_' —j_]— GND § Rload

+

1/2 vdd I

Figure 2 - Shunt D2D Configuration

Getting back to the differential configuration in F igure 1, there are other noteworthy advantages. Some
of these advantages are lower LO to RF reradiation, lower DC offset, and lower current (only 1 D2D for
a differential output). Furthermore, the architecture guarantees that the baseband differential signals will
be amplitude and phase balanced, regardless of the imbalance at the input of the circuit at RF (the balun
outputs). This is because when the FET switch turns on, the two input capacitors are shorted together in
series with a differential voltage across them. The capacitors have no ground reference and thus don't
even know there is an imbalance. All they see is a differential voltage across them. The advantages to
this configuration are significant. In practice, the differential configuration has yielded high linearity that
is repeatable. This is a noteworthy performance improvement over the shunt and series configurations

of D2D.

In summary, to make the FETS more linear, there are two things this discussion has noted:

1) Maintain the instantaneous voltage differential V Gs as large as possible for both the NMOS and
PMOS devices. Note that we are not just requiring the DC voltage to be as large as possible, but

the instantaneous differential voltage.

2) Make the voltage differential V gg change directly proportional to Vpg. In particular, the
optimum constant of proportionality is 0.5. The relation is as follows:

Vas! = Viias + 0.5 * [Vpg|

SKGF Ref. 1744.0660007 117

RPX-Farmwald Ex. 1013, p 122



Second Description

The description that follows is similar to the description and analysis above. Thus, only

equations and plots are presented.

K:= .24 vti= 1.2

vds:==0,.1. 5

id(vgs, vds) := K'[2~(vgs - vt)-vds - vdsz] if vds<vgs - vt

[ K-(vgs - vt)z] otherwise
vgs =3 c=.5

id1(vgs, vds) := K-[z-(vgs +cvds - vt) vds - vdsz] if vdss(vgs + cvds - vt)

[ K:(vgs+cvds - vt)?'] otherwise

11 (53005 Difa) G

4
/s P
= id(3, vds) / / _ 1A(5, vels)
id(4,vd ~
(4, v / _
id(5, vds) V4 s (s
id1(3,vds) 2| Ve ~ 1o (4, ve)
id1(4, vds) ////
id1(5, vds) /% id (3, vds)
—= ~
; | ! [
% 1 2 3 g 5
vds
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fi=1 Vin:=1 w= 2 f t:=0,.01.5 vds(t) := Vin-sin(w-t) vgs = 3

id(vgs, vds, t) = K-[Z-(vgs - vt)-vds(t) - vds(t)2] if vds(t)<vgs - vt FET curves

[K-( vgs - vt)z] otherwise
=1

id2(vgs, vds,t) := K-[Z-(vgs + c-vds(t) ~ vt)-vds(t) - vds(t)z] if vds(t)$(vgs + cvds(t) - vt)  D2D Shunt Curves

[K~(vgs + cvds(t) - vt)z] otherwise
c:=.5

id1(vgs, vds,t) = K-[Z(vgs; + c-vds(t) - vt)-vds(t) - vds(t)z] if vds(t)<(vgs +c-vds(t) - vt)  D2D Differential Curves

[K-(vgs + cvds(t) - vt)2] otherwise

id( vgs, vds, t)

idl(vgs,vds,t) ¢

id2(vgs, vds, t)
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Number_of Samples := 1024  resolution is Sample_Rate/Number of Samples
Spectrum(t) := id(vgs, vds, t) Spectrum1(t) := id1(vgs, vds, t) Spectrum2(t) := id2(vgs, vds, t)

1

Sample_Rate := 102.4 Sample time := —————
- Sample_Rate

row := 0, 1.. Number_of Samples - 1

Sampled_Waveformm w -= (Spectrum(Sample_time row)) Sampled Waveform1 row == (Spectrum1 (Sample_time-row))

frequency := fft(Sampled_Waveform) frequency| := ffi(Sampled_Waveform1)

Sampled Waveform2 ow = (Spectrum2(Sample_time-row))

frequency?2 := ffit(Sampled_Waveform2)

n:=0,1.512

FET, :=[ frequency ‘

D2Ddiff, := | frequencyl, |

D2Dshunt_ := | frequency2_ I

SKGF Ref. 1744.0660007 120

RPX-Farmwald Ex. 1013, p 125



11.406 T T T T

10-log FETn ?l) T

T

c0oe
10-log DZDdiffn

| ] |
=50 l_ ! | ]
eee : l l
10-log D2Dshunt i ' l | l
[SICHC] : I
-100 - [ i -
e Al
-150 59 _‘_\\M&&Aﬁ ﬁ\f /VV\ ] f\f\R
40 50
n 50
D2D Differential Configuration
50 T T | I
G
o _
=50 - _
10-log D2Ddiff_
oo -100 - .
-150
i ! |
200 5 5 20 30 40 50
n
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FET only

0 | | | 1
of ? .
10-log FETn -50 —
[Sacac)
-100 [t -
 AALRA Ak fian andRis
0 10 20 30 40 50

n

D2D Shunt Configuration

=50
10-log D2Dshuntn
[Sacas) -100

-150

=200
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vaperture (t) := 3-sin(w-t)

Vgs(t) := vaperture(t) + vds(t)-.5

- Vgs (¥

Ves(t) ™ vapertuy c(t}

vaperture(t)

Og 0s
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Conclusion

While various embodiments of the present invention have been described above, it should
be understood that they have been presented by way of example only, and not limitation. Other

embodiments are possible and are covered by the invention.
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